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Allltrld-The growth of a single shear band in an infinite block of an illCOlllpressible solid under.oing
plane strain tension or compression is studied for three material models-nonlinear elasticity, kinematic
hardening plasticity and a plasticity theory based on yield surface comer development. The study includes
analyses of bifurcation and post·bifurcation behaviour as well as the sensitivity of shear band growth to
material imperfections. Depending on their orientation and on details of the material model, shear bands
may form gradually with relatively limited localization of strain or they may localize c.ltastrophically with
an allendant strong sensitivity to initial imperfections in the form of material inhomogeneity.

I. INTRODUCTION
For ductile metals localization of plastic flow into one or several shear bands is often observed
when the fundamental smoothly varying deformations have reached a certain critical level. The
conditions for bifurcation into a shear band have been given by HiII[I}, by Rudnicki and
Rice[2} and by Rice [3], who also gives a discussion of several aspects of shear band
localization for various material models. For the classical elastic-plastic solid with a smooth
yield surface no bifurcation into a shear band is predicted at a realistic level of straining, unless
the strain hardening level is very low. However, the critical strain is considerably lowered by
the assumption that a vertex develops at the current stress point on subsequent yield surfaces.
Another deviation from the assumptions of classical plasticity theory that significantly reduces
the critical strain for shear band formaion is the plastic dilation that will appear as the
macroscopic effect of the nucleation and growth of microscopic voids in a ductile material, as
has been discussed by Yamamoto [4] and Needleman and Rice[S].

In the present paper shear band formation in an incompressible material is considered under
conditions of plane strain, for which bifurcation has been analysed in detail by Hill and
Hutchinson[6]. The development of shear bands beyond bifurcation is analysed both asymp­
totically and numerically on the basis of three different constitutive descriptions. The study
emphasizes the characterof the growth process as dependent on the material model. One of the
models considered is a phenomenological corner theory of plasticity recently developed by
Christoffersen and Hutchinson [7]; the second is the purely elastic material (a large strain
generalization of 11 deformation theory) that is also chosen to represent the response in the
total loading region of the vertex model; and the third is a Bow theory of plasticity with
kinematic hardening.

The critical bifurcation strain for the purely elastic solid is identical to that of the vertex
model. However, the post-bifurcation behaviour and the imperfection-sensitivity found for the
two materials differ considerably. In fact, even for the corner theory the behaviour after
bifurcation is sensitive to details of the vertex description. In some cases it is found that the
vertex model predicts early saturation of shear bands orientated such that they set in at the
lowest strain levels, whereas bands developing at later stages experience continued localized
shearing. This behaviour agrees qualitatively with experimental observations of shear band
formation in a high strength maraging steel made by Anand and Spitzig[8}.

The results for a kinematically hardening solid are included here to show that shear band
localization at a realistic strain level may be predicted even for a smooth yield surface,
provided that there is a small initial material inhomogeneity, The predictions for the kinematic­
ally hardening solid are not unlike those for the solid which develops a corner, although for
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very small initial inhomogeneities the bands occur only at large strains in the kinematically
hardening solid.

In all cases in this paper, only the simplest of shear bands is analysed where the band is
assumed to be of constant width and infinite extent so that there is no variation in behaviour
along the band. The more difficult problem involving growth of a band of finite extent from
some initial inhomogeneity or geometric imperfection has only just recently been attempted by
Tvergaard et al. [9] for a plane strain tension specimen and by Knowles and Sternberg [10] and
Abeyaratne [II] for bands emanating from the tip of a crack in anti-plane shear.

2. SHEAR BAND BIFURCATIONS

Conditions for shear band bifurcations in time-independent solids have been given by
Hill [l], Rudnicki and Rice [2] and Rice [3]. Here we quickly restate the bifurcation results of
Hill and Hutchinson[6] for the onset of shear bands in an incompressible, time-independent
solid subject to plane strain tension or compression.

An infinite block of material is assumed to be incompressible, homogeneous and orthotropic
with respect to the Xi axes in the current state. The Cartesian components of the Cauchy stress
in the (XII X2) plane are

0'11 = 0', 0'12 =o. (2.1)

If the material is incrementally linear, an incremental plane strain response is governed by two
positive instantaneous shearing moduli p. and p.* where

* * 2 *(. .)0'11 - 0'22 = P. Ell - E22 , (2.2)

Here Jjj are the Cartesian components of the Jaumann co-rotational rate of the Cauchy stress
and Ejj is the Eulerian strain-rate. Shearing at 45° to the (XhX2) axes is governed by p.*; 4p.* is
also the tangent modulus for a plane strain increment of stressing parallel to the Xl axis. The
fundamental, or uniform, solution increment satisfies

0'=4P.*E

with * .0'11 = 0', * * 00'12 = 0'22 = (2.3)

where Vj(Xt.X2), i =I, 2 are the velocity components.
As shown in Fig. 1, '" is the angle between the incipient shear band normal" and the xI-axis

while t is the shearing direction so that

(2.4)

Here we restrict attention to shear band solutions with uniform strains and rotations in an
infinite band of constant width. The eigenmodal velocity gradients in the band associated with
bifurcation into such a solution are

(2.5)

The complete bifurcation mode is a linear combination of the fundamental increment (2.3), and
(2.5) where the amplitude factor a is determined by post-bifurcation considerations.
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Fig. I. Shear band in an infinite block of material.

The bifurcation condition for the onset of a shear band with orientation r/J is [6]

(p, -~ u) tan4 r/J +2(2p,*- p,) tan2 r/J + (p, +~ u) =o. (2.6)

If

(2.7)

there are no real solutions for tan r/J to (2.6); the equations governing an incremental response
of the block are elliptic and shear bands are not possible. However, if

(2.8)

the equations are hyperbolic and there are two solutions for tan2 r/J. If p, < lul21 there is only
one solution. This is the parabolic case; it will not be encountered in this paper. Assuming (2.8)
holds, one can arrange the solutions for tan2 r/J into the form

(2.9)

where the reality of the square root is ensured by (2.8).
Conditions (2.8) imply u 2> 16p,*(p, - p,*) and p, > 2p,* from which it follows that

u2> 16p,*2. Thus it can be seen immediately from (2.9) that for plane strain tension (u > 0)
both orientations satisfy

tan2 r/J > I or Ir/JI> 1f'/4. (2.10)

As noted by Nemat-Nasser et af.[12], the angle between the shear band normal and tensile axis
is always greater than 45° at bifurcation in plane strain tension.

Given any shear band solution in the incompressible block under plane strain tension
(UII =u), the corresponding solution under plane strain compression (U22 =- u) is obtained by
superposition of a hydrostatic pressure Uil = - uBI/' Thus if r/J gives the current orientation of the
band in plane strain tension, then the normal to the band in the corresponding plane strain
compression solution makes an angle 11/2 - r/J to the X2 compression axis. From (2.10), the angle
between the band normal and the compression axis at bifurcation is always Jess than 45°. if f is
the loprithmic strain in the XI direction in the tension problem, then -f is the compressive
strain in the X2 direction in the corresponding compression problem. AU results presented below
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will be for plane strain tension, but they can be converted to the compression case with the aid
of the above observations.

In a history of monotonic straining from the unstressed state the inequalities associated with
ellipticity (2.7) will generally hold at low strains. For the constitutive laws considered in this
paper, ellipticity is first lost with the possible emergence of shear bands when the equality in the
second of the conditions (2.7) is met, i.e. when

a/ = 16/-L*(/-L - /-L *) with /-L > lac/21· (2.11)

This will be referred to as the critical bifurcation stress. The associated critical shear band
orientation from (2.9) is

(2.12)

3. BIFURCATION AND POST-BIFURCATION BEHAVIOUR OF A SHEAR BAND
IN A NONLINEAR ELASTIC SOLID IN PLANE STRAIN

In plane strain, an isotropic, incompressible nonlinear elastic solid has a strain energy
density W which is a function of the maximum principal stretch A, or equivalently the
maximum principal logarithmic strain E =In A. With the (Xl! X2) axes coincident with the
principal axes and with E, = - E2 = E[13],

a, - a2 =AdWldA =d WIdE

(3.1 )

We will illustrate the development of a shear band for a specific power-law material which
in plane strain is specified in terms of the maximum principal logarithmic strain by

W=_k_ EN+1

N+I
(3.2)

where N is a "hardening" exponent which falls in the range 0 < N $ 1. In plane strain tension
(at =a, a2 =0) this gives

(3.3)

and

where

(3.4)

q(E) = 2E coth (2E). (3.5)

Bifurcation
For the power-law material it is readily shown that the critical bifurcation strain associated

with shear band bifurcation from (2.11) satisfies

(3.6)
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and the associated critical shear band orientation (2.12) is given by

tan I/Jr = eOr = A,.. (3.7)

(The opposite-signed orientation is also possible; but, for simplicity of presentation, we will
always consider only positive orientations I/J with the sense shown in Fig. I.)

If "', is the orientation of a material line (e.g. a potential band as in Fig. I) in the undeformed
state, its orientation'" following a uniform strain E in the xI-direction is given by

tan '" =e2< tan 1/11, (3.8)

A simple property of the critical bifurcation solution for the power-law material which follows
directly from (3.7) and (3.8) is

(3.9)

where "'1 is the orientation of the band material in the undeformed state.
Figure 2 displays the critical strain and the associated band orientation "'C as a function of N

as determined from '(3.6) and (3.7). For small N, Ec ~ yN and "'C ~ 45°. In the next subsection a
numerical analysis of the finite amplitude response following bifurcation is given, including the
influence of initial material inhomogeneity. Following that, analytical results are given for the
initial post-bifurcation behaviour and imperfection-sensitivity.

Post-bifurcation and imperfection-sensitivity: numerical results
Attention is restricted to shear bands which are straight with infinite extent as depicted in

Fig. 1. The displacement gradients and stresses are uniform inside and outside the band with
discontinuities in certain components across the boundaries of the band, consistent with
continuity of traction and displacement. The width of the band does not arise as a variable in
the analysis when the band is infinite. The state outside the band is required to be one of plane
strain tension aligned with the xI-direction. Finite discontinuities of this type have been studied
in some detail by Knowles and Sternberg [14l, who caU them strong shocks in analogy to
discontinuities in fluid mechanics.

When the material is homogeneous in the underformed state the body will be said to be
perfect. We will also consider an imperfect body in which an initial inhomogeneity is specified
in the form of a band of material with uniform properties which are slightly different from those
of the exterior regions. The orientation of this band in the undeformed state, "'1' can be
specified arbitrarily. The numerical examples presented below are based on the power-law
material (3.2). We take k = ko outside the band and k =kb inside the band and introduce a
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measure of the imperfection as
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(3.10)

so that i> 0 implies that the band material is softer than the outside material.
With Xi (i = 1,2) as Cartesian axes, let Ui(Xj) denote the displacement components referred

to these axes of a material point initially at Xj. Let aij denote the Cauchy stress components
referred to the Xraxes. Quantities inside the band will be labelled by a superscript or subscript
b while outside the band the label will be O. Outside the band a state of plane strain tension is
prescribed such that the Xi-axes are principal with stretches ,\ 1

0 =1/,\2
0 ==,\ and with

utI =(A -I), ut2 =(,\ -1-1), u~.2=uti =0

aVI == a, a~ =aV2 =O.

(3.11)

(3.12)

The logarithmic strain E =In'\ outside the band will be regarded as the independent variable
specifying the applied deformation. The stresses and strains are taken to be related through
(3.1)1'

Inside the band the four displacement gradients ut are constrained by the condition of
incompressibility which can be stated as

(3.13)

Continuity of displacements across the interfaces between the band and the exterior regions
requires

(3.14)

where t1=(- sin "'1, cos "'I) is the tangent vector to the band material in the undeformed state.
The Lagrangian strain tensor in the band is

(3.15)

With xj denoting the principal axes of ."b and with 111'b and l1Z,b as the principal components,
the principal logarithmic strains in the band are

From (3.1h

a/ - a2,b =dWldE/.

Continuity of traction across the band interfaces requires

and

(3.16)

(3.17)

(3.18)

(3.19)

where J' and t are the current unit normal and tangent vectors to the band defined in (2.4).
The simple numerical scheme used to calculate the shear band solutions was formulated as

follows. Of the four displacement gradients in the band, x == ut.2 and y == uL are chosen as
unknown variables, while uti and u~.2 are expressed directly as linear combinations of x and y
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with the aid of the two displacement continuity equations (3.14). The incompressibility con­
straint (3.13) provides one equation for x and y. The second is (3.19) which reduces to

(0'/' - 0'2") sin 2(1/1 - a) - 0' sin 21/1 =0 (3.20)

where a is the angle between the principal xi-axis in the band and the xI-axis. The unknowns x
and y enter into (3.20) in a highly nonlinear way through (3.13) and through rotation to the
principal strain axes where (3.16) and (3.17) are used. This, however, presents no difficulty in
the numerical procedure. The two equations in x and yare solved using a standard Newton­
Raphson method in which derivatives with respect to x and y needed in each iteration are
evaluated numerically. The remaining eqn (3.18) is not needed in the determination of x and y
but can be used to determine the jumps in the hydrostatic stress component across the band
interface once x and yare known.

The numerical results shown in Fig. 3 are for the power-law material (3.2) with N = 0.1 and
these are typical for other N -values. The growth of the shear band as measured by the angle flJ

is shown as a function of the strain E outside the band. The angle flJ (see Fig. 1) is that made
with the xI-axis by a material line element in tbe band which is initially parallel to the xI-axis; flJ

is given by

(3.21)

The critical bifurcation for the perfect block is Ec =0.32 when N = 0.1 with 1/Ic =54.2°. In all
cases shown in Fig. 3, perfect and imperfect, the initial band orientation is taken as 1/1, =
1T/2 - 1/Ic =35.8°, which, from (3.9), corresponds to the initial orientation associated with the
critical bifurcation. The subsequent orientation of the band is given by (3.8). The relation
between flJ and E is independent of leo in the perfect case, while in the imperfect case it depends
on l defined in (3.10) but not otherwise on leo and k".

When the material in the band is softer than tbat outside the band (l> 0) tbe response leads
to negative fA) with shearing in the direction one would expect. The response is highly
imperfection-sensitive in the sense that a very small softening in the band results in a
substantial reduction in the maximum strain Emu wbich can be achieved outisde the band. A
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Fig. 3. Post-bifurcation behaviour and imperfection-sensitivity in a IlOllIinear elastic: solid.
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one percent difference between kb and ko results in a thirty percent reduction in Emu. More will
be said of this below. When l <0, the material in the band is harder than that outside and the
opposite-signed shearing takes place. While these responses are actual solutions, they are
artificial in that the shear deformation is only permitted within the band. Bifurcation outside the
band would certainly occur for E > E, if permitted.

Initial post-bifurcation and imperfection-sensitivity-analytical results
The behaviour of the solutions in the vicinity of the bifurcation point is amenable to a

perturbation analysis in the spirit of Koiter's [15] approach to initial post-buckling behaviour
and imperfection-sensitivity. Koiter's approach was not intended for problems in which
ellipticity is lost, but the formalism carries over to the nonlinear algebraic equations governing
the present problem. Budiansky's[16] version of Koiter's theory is based on a singular
perturbation expansion of the equilibrium equations, rather than of the energy functional used
by Koiter and Budiansky's version appeared to be the more convenient for arriving at the
expansions given below. The conversion from Budiansky's formalism to the results given below
is relatively straightforward. and thus we will omit details and give only the end results.

As in the previous subsection. the current band orientation at strain E =In A outside the
band is specified by '" in (3.8) where "'1 is the initial orientation. The material outside the band
is isotropic and incompressible and is specified by W(A I) as in (3.1), where AI is the maximum
principal stretch. Inside the band the strain energy density is taken to be

(3.22)

so that l> 0 corresponds to a softer material inside the band than outside. With l = 0 the
material is initially homogeneous.

Denote the displacement gradients in the fundamental solution of the perfect case (l=0)
given in (3.11) by u?j(A). Outside the band the fundamental solution is always in force and the
stretch there, A, is again regarded as the applied deformation parameter. For the perfect case
bifurcation occurs at A, and the eigenmodal gradients in the band are

(3.23)

where t' is defined by (2.4) with", = "', and ,,I, the normal in the undeformed slab, is given by
(2.4)1 with'" ="'1.t The expansion for the displacement gradients in the band has the form

U,· =u9 ·(A) + i:U\I) + i:2u(2) + ...
1,/ 1./ !>' 1,/ !> 1./ (3.24)

where ~ is the amplitude of the eigenmodal contribution which plays the role of the expansion
parameter.

With l =0, the initial post-bifurcation expansion relating A and ~ is[15, 16]

(3.25)

while from (3.21)

(3.26)

The bifurcation point is an asymmetric one and the exact result for A is given by

(3.27)

tTo avoid introducing new notation in eqns (3.23)-(3.30), we now use a subscript or superscript c to denote quantities
evaluated at the bifurcation point, whether or not bifurcation occurs at the critical (lowest) bifurcation point.
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With 0< III ~ 1, the asymptotic relation between A, ~ and l in the vicinity of Ac is[l5, 16]

(3.28)

where the exact result for p is given by

(3.29)

For lAp> 0 there is a limit point in the relation of Ato ~ and from (3.28) the maximum Ais

_ _ - 1/2
Amax - Ac 2(~ApAc) +.... (3.30)

The strong imperfection-sensitivity of Amu as implied by the square root dependence on the
imperfection amplitude l is characteristic for elastic systems with an asymmetric bifurcation
point.

We specialize the above results further to the power-law material (3.2). Furthermore, as in
the example in Fig. 3, we choose "'1 as the initial orientation associated with the critical
bifurcation strain (3.6) so that relations (3.4)-(3.5), (3.7) and (3.9) hold, as do the curves in Fig.
2. In this case (3.27) and (3.29) become

(3.31)

and

(3.32)

These quantities are plotted in Fig. 4. With the aid of (3.26) and f =In A, (3.28) may be
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Fig. 4. Post-bifurcation parameters A and p for a nonlinear elastic solid as functions of the strain Iwdening
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re-expressed in terms of E and w as

+ A + t cos "'C cos "'J +E = Ec W r"p
cos "'0 cos "'I Acw

(3.33)

Curves of w as function of E from the asymptotic result (3.33) with N = 0.1 are shown as an
insert in Fig. 3 where they can be compared with the unapproximaled numerical results.

A revealing further simplification is found for smalJ N (i.e. 0< N ~ I). Then

and (3.33) becomes

Ec ==yN, A == 1/4, p==1

For l>o,

Emax == Ec - y l +....

(3.34)

(3.35)

4. BIFURCATION AND POST-BIFURCATION BEHAVIOUR OF A
SHEAR BAND IN PLASTIC SOLIDS

The bifurcation equations of Section 2 apply to a time-independent plastic solid under plane
strain tension when the solid is taken to be incompressible and initially isotropic and when 1.£
and 41.£* are identified with the instantaneous shearing modulus and plane strain tension
modulus associated with the least stiff plastic loading branch currently available. For an
elastic-plastic solid with a smooth yield surface 1.£ is necessarily the instantaneous elastic
modulus because the yield surface prevents a plastic shearing increment, if2, at bifurcation.
Since 41.£* is the tangent modulus associated with plastic loading, it will generally be true that
41.£*~ 1.£ well into the plastic range and from (2.11) the critical stress for the onset of a shear
band is

(4.1)

When 1.£ is the elastic shear modulus, the bifurcation stress (4.1) is not likely to be attained even
at very large strains in most structural metals deformed at room temperature, except at
extremely low strain hardening (e.g. 1.£*/1.£ < 10-4

).

If shear band formation is highly imperfection-sensitive in such a material it is possible that
a small imperfection, such as slightly softer material in the band, will lead to pronounced shear
band growth at moderately large strains even though (4.1) is not attained. This is, in fact, the
situation for a solid characterized by kinematic hardening in which a smooth yield suTface
translates but does not expand, as will be seen below. When isotropic hardening is assumed
even the imperfect block of material does not permit significant shear band growth, except
possibly at very large strains.

If a corner, or vertex, develops at the loading point of the yield surface the instantaneous
shearing modulus 1.£ in a state of plane strain tension takes on a value which can be well below
the elastic shear modulus. The critical bifurcation stress will therefore also be well below the
corresponding critical stress for a solid witl1 a smooth yield surface. Following the presentation
of results for the kinematic hardening solid, we will discuss shear band development in perfect
and imperfect blocks of a solid which permits corner formation. First, however, we give the
incremental equations for an isolated shear band in a general incompressible solid undergoing
plane strain tension or compression. The analysis is similar to that of Rice[3), although he does
not restrict consideration to an incompressible solid.

The current orientation of the band is again specified by '" as in Fig. 1. Outside the band
plane strain tension is in force according to (3.11) and (3.12). With Vi(X" X2) as the velocity



Shear band formation in plane strain

components of a particle currently at (x" X2) with respect to the Cartesian axes Xi,

~1

(4.2)

is the Eulerian strain-rate. Outside the band the velocity field is denoted by Vjo. Inside the band
the deformation is also homogeneous with the possibility of a uniform shearing parallel to t
superimposed on Via according to

b 't + °Vij =a illl Vij'

The rate of change of lII, defined as before in Fig. I, is related to ti by

6J =ti cos2
('" - lII) - i sin 2111

(4.3)

(4.4)

where i =iV, is still the strain-rate outside the band. Continuity of traction-rate across the band
interfaces can be expressed as

(4.5)

where nij are the components of the unsymmetric nominal stress tensor (the first Piola-Kirchhoff
stress) referred to the Xi-axes and nil are the increments, or rates, of these components.

As before, let (Til and ~iI be the Cartesian components of the Cauchy stress and its
Jaumann-rate and let lij and Sil be their respective deviator components. The 3-dimensional
incremental constitutive relation is written as

(4.6)

where ipp = 0 and the hydrostatic part, upp =~pp, is independent of the strain-rate. The
instantaneous moduli L in the current state will, in general, have more than one branch
depending on i; they are taken to be independent of hydrostatic pressure. The components
share the indicial symmetries

(4.7)

Using the connection

one can write

where

, +1 . ~nij =Ci/ldVI,k 3(Tppoil

(4.8)

(4.9)

(4.10)

The two equations (4.5) expressing continuity of traction-rate can be used to solve for d and
, b 'a' f ° (.. f .)(Tpp - (T pp In terms 0 ViJ I.e. In terms 0 f:

(4.11)

(4.12)
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The branch of Lb entering in the above must be consistent with Eb and similarly for LO. The
hydrostatic part of the stress outside the band, u~p, may be specified arbitrarily and (4.12) then
gives the rate at which u:p deviates from u~p. One can show explicitly that only the difference
u:p- u~p actually enters into (4.11) and (4.12).

For the perfect block, cb =CO prior to bifurcation so that Ii =0 and u;p - u~p =0 until

(4.13)

This is the shear band bifurcation condition as derived by Hi11[I} which leads to (2.6) (see
Appendix II of [6]).

For an imperfect block and moduli Lb and LO evolve differently once plastic deformation
sets in so that Ii and u:p- u~p are nonzero from the start of plastic straining. The growth of the
band is determined from the incremental equations (4.11) and (4.12).

Shear band growth in a kinematic hardening solid
Prager's kinematic yield surface and hardening rule is adopted. With ajj as a deviator tensor

specifying the current center of the yield surface, the yield condition is

(4.14)

where Sij =Sjj - aij and U y is the initial yield stress which fixes the size of the yield surface. The
material is assumed to be incompressible. The tensor of instantaneous moduli defined by (4.6) is

(4.15)

assuming (4.14) holds and .fiji> 0, while the second part of (4.15) is excluded otherwise. In
(4.15),

(4.16)

E is Young's modulus and E, is the tangent modulus of the uniaxial true stress-logarithmic
strain curve at the stress level U y +(3ajjaiJ2)1/2. The translation of the yield surface is specified
by the finite strain generalization

(4.17)

for plastic loading and ~ij = 0 otherwise, where tr is the Jaumann-rate of a.
The uniaxial stress-strain behaviour is represented by a piecewise power-law

uluy = EEluy for E$.uylE and uluy=(EEluy)N for E>u)E (4.18)

With u/ denoting the yield stress in the band and uyO that outside, the imperfection amplitude is
here defined as

(4.19)

so that l> 0 corresponds to a softer material in the band.
Growth of the shear band is shown in Fig. 5 for an initial orientation !/II = 1l.45° and for a

material with u)E=0.005 and N=0.2. In the case l=O.Ollocalization takes place at
Em.. = 0.81, at which strain elastic unloading occurs outside the band so that E remains
essentially unchanged as w increases in magnitude. A similar behaviour is found for the smaller
inhomogeneity, l =0.001, at a higher strain Em.. = 1.02. However, for the negative imper-
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Fig. S. Growth of a shear band in a kinematically hardening solid with u/E .. 0.0IlS and N .. 0.2, for
variOus initial inhomogeneities. The initial band orientation is "" .. 11.45'.

fections, Cd only grows a small amount and no localization occurs, although this response is also
artificial.

As the band grows, a discontinuity develops in the stress component acting parallel to the
band, i.e. in Uti • ul#r The jump in Uti across the band interface as a function of the strain £

outside the band is shown in Fig. 6 for the cases of Fig. 5. For the cases in which the band
material is softer <i> 0) the jump in u" results in a larger effective stress in the band than
outside it promoting localization. In part, tbis explains why shear bands are possible in a
hardening material.

The dependence of the localization strain £lIl&X on the initial inclination angle 1/11 is shown in
Fig. 7 for two imperfection levels, again with N =0.2. Also shown as dashed-line curves is the
strain E where the rotation in the band attains the level w =-to, and it can be seen that
localization occurs at strains just beyond this relatively low level of rotation. For i =O.Ot the
lowest value of EIIlU is OJ2 and is associated with 1/11 =26°; for i=0.001 the corresponding
values are ElIl&x = 1.02 at 1/11 = 12°. If 1/11 is too large, localization does not occur at all since then
the band will have rotated past the 45°-range and thus past being critical, at strains which are
smaller than the minimum in Fig. 7.
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Fig. 6. Jump in (Tn" (TqI~1 across band interface for the kinematically hardening solid with u,lE .. 0.005,
N .. 0.2 and "" .. I1.4S·.
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Fig. 7. Localization strain l .... vs initial band orientation 1/1, for a kinematically hardening solid with
(T)E = 0.005 and N = 0.2.

Figure 8 shows curves similar to those in Fig. 7, but for a material with lower strain
hardening (N =0.1). For this material the critical localization strain corresponding to t =0.01 is
smaller than that found in Fig. 7, but for the smaller imperfection, t=0.001, the localization
occurs at a larger strain. Also, for this low hardening material the localization strain increases
very rapidly as 1/11 exceeds the angle corresponding to the minimum value of Emax, and for
slightly larger 1/11 no localization is found.

A most interesting aspect of the results of Figs. 7 and 8 is that, for a realistic level of
material inhomogeneity, localization into shear bands is predicted by a theory of plasticity with
a smooth yield surface which retains the classical assumptions of normality and plastic
incompressibility. Kinematic hardening was found to playa similar role in the analysis of
localization strains in thin sheet necking in the study by Tvergaard[17]. In the present shear
band problems, the yield surface has translated the equivalent of about 20'1 for N =0.2 when
localization sets in and about 0.70', for N = 0.1. Compared to a surface characterized by
isotropic hardening, the curvature of the kinematic hardening surface is substantially greater,
which lowers the stress change needed to develop shearing in the band. In this sense, the
kinematic surface functions in somewhat the same manner as a corner on a yield surface, which
we now investigate.
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Fig. 8. Localization strain E.... vs initial band orientation 1/1, for a kinematically hardening solid with

(T)E =0.005 and N =0.1.
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Shear band growth in a solid which develops a comer on its yield surface
A finite strain version of 12 corner theory[7] will be employed here as a phenomenological

representation of a solid which develops a corner on its yield surface. Elasticity will be
neglected and thus tbe corner theory characterizes a generalized rigid-plastic solid. For the
most part. the notation used here follows that of [1].

Tbe corner theory is constructed to coincide with a finite strain 12 deformation tbeory[l7]
for a limited range of deformation histories called total loading. The 12 deformation theory
cbaracterizes an incompressible. isotropic non-linearly elastic solid which in the 3-dimensional
principal axes of stress and strain satisfies

(4.20)

where Sj and Ej are the principal stress deviator and logarithmic strain components. With

(4.21)

E.(O'..) is the secant modulus of the uniaxial true stress-logarithmic strain curve at 0'.. and this
function must be chosen to iit uniaxial data according to E. = O'JEc- The incremental form of J2

deformation theory is[l8]

(4.22)

where

(4.23)

and wbere E, = dO',/dEc- In principal axes only tbe "sbearing" components of Q are nonzero
with

Q Q Q Q E. {3(SI- S2) h[3(SI- S2)] I}
1212 = 2121 = 1221 = 2112 ="3 2E. cot 2E. - (4.24)

and witb similar expressions for QI313 and Q2323.

With s as the current stress deviator at the loading point on the yield surface, the yield
surface in tbe vicinity of s is a generalized cone whose axis passes througb s and the origin of
stress space. A positive angular measure p of the direction of the stress-rate from the cone axis
is defined by

(4.25)

where tbe second expression is specialized to the plane strain. principal stress axes. The
opening of the cone is specified by 0< P< Pe. where Pe is a parameter satisfying (fI'/2) < Pe <
1r; for P> P.. the material is rigid. In the calculations reported below. Pe is prescribed to be a
fixed value during the deformation history. A sharp corner is modelled.by a relatively tarle
value of P... while a blunt corner is associated with values of Pe only sli8btly Jarpr than fl'/2.

A positive anaular measure • of the direction of the strain-rate from the cone axis is defined
as[7}
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where the second expression holds in the principal stress axes in plane strain and where

h =[~coth (3S I ) E,]112.
E, E, Et

The rate-constitutive relation is specified by the stress-rate functional

according to

where

(4.27)

(4.28)

(4.29)

(4.30)

The function g(1/», which provides the transition from total loading to unloading, is taken to be
specified by [7]

g=l 0:51/>:580 )

= (1- x3r 2 80 < I/> < 8n (4.31)

where x = (I/> - 80)/(8n - 80), and where 80 and 8n are parameters defined below. A total loading
increment is one for which I/> :5 80 such that the behaviour coincides with 12 deformation theory
(i.e. L= D). For 80 < I/> < 8n, g(l/» provides a smooth transition, consistent with convexity
requirements, to rigid incremental response for I/> ~ 8n• Thus, 8n specifies the forward cone of
normals, within which the strain-rate falls. In the case of plane strain with elastic strains
neglected, which is being considered here, one can show that 8n is related to the cone angle 13c
by

8n :::arctan[(tan13c)/h]-~. (4.32)

In the calculations reported below, the angle 80 specifying the total loading regime is taken as a
fixed fraction of 8n•

This completes the specification of the version of J2 corner theory used here. An explicit
formula for L in terms of g(l/» and D is obtained along lines similar to the development in
Section 2(iv) of [7]. Calculations were performed for a material with a true stress-logarithmic
strain curve given by

(4.33)

which reduces to (3.3) in plane strain where k = (2/v3)N+1 K.
Since the corner theory coincides with the power-law elastic material for total loading

responses, the perfect block of corner theory material under plane strain tension will bifurcate
at precisely the same strain as the elastic material in (3.6) and Fig. 2,if bifurcation takes place
in such a way that total loading does indeed occur within the band. If the elastic material itself
bifurcates in such a way that I/> < 80, then the post-bifurcation behaviours of the two materials
will coincide until I/> exceeds 80• For the choice of parameters in the examples presented below,
the elastic material does not bifurcate in a manner such that I/> < 80• Thus the constraint I/> S 80

must be imposed on the bifurcation solution (4.3) in the band and this permits the determination
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of ti and dw/dE immediately following bifurcation. If

tan 21/1 > - h cotan 00•

467

(4.34)

one can show that bifurcation takes place with ¢ = 00 in the band and ¢ = 0 (dE> 0) outside.
The initial slopes of the two branches of the bifurcation solutions are

dw _ 2cos2 1/1
dE - cos 21/1(tan 21/1 ± h cotan (0)

corresponding to dw <0 for the plus and dw > 0 for the minus. However. if

tan 21/1 < - h cotan 00•

(4.35)

(4.36)

there is just one bifurcation solution with ¢ = 00 in the band and ¢ = 0 outside. It is given by
(4.35) with the minus sign corresponding to dw > 0 with dE> O. The other solution has ¢ < 60 in
the band and a rigid response (dE =0 with U< 0) outside such that dw <O. Illustrations of each
of these possibilities will be seen in the figures below.

Four numerical examples based on J2 corner theory with N =O. I are presented in Figs.
9-12. In the first three examples in Figs. 9-11, the initial orientation of the band is chosen as
1/11 =35.8° corresponding to the critical orientation I/Ie =54.2° with Ee =0.32 for the perfect
block, as in the examples in Fig. 2 for the nonlinear elastic material. The initial slopes of the
bifurcation solutions are shown as short dashed-line segments emanating from Ee, and these
slopes are determined from (4.35) since (4.34) holds in all three examples. In Fig. 12, 1/11 =W
corresponding to a bifurcation strain in the perfect block of E= 0.68. In this instance (4.36)
holds.

The yield surface corner in the example of Fig. 9 is rather sharp with f3e =135°. The total
loading range is taken as 80 = 8,./2, so that coupled with a sharp corner is a large total loading
range. It can be seen that a very small imperfection in the form of a softer band material, f> 0,
where

(4.37)

leads to localization at a strain Emax below Ee• For the case l =0.001, for example, the shear
band develops to w S! -1° whereupon the material outside the band unloads and becomes rigid.
From that point on, all deformation is confined to the band. The response for the negative­
signed imperfection,l= -0.001, is included for completeness.

To draw contrast with the above results for the sharp corner, Fig. 10 shows what happens
when the yield surface has a relatively blunt corner with f3e =115°. Here again the total loading

w
6'

N '.1
fJc"135'

80 ' 8n/2

"'I" 35.S·

4'
2,'

-2'

-4'

-12'

.5 .6 C.

Fia. 9. Growth of a shear band in a solid that develops a rather sharp corner on the yield surface. for
various initial illbomoleneities. Dashed lines show initial post-bifurcation slopes for a homo,eneous solid.
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Fig. 10. Growth of a shear band in a solid that develops a relatively blunt comer on the yield surface, for
various initial inhomogeneities. Dashed lines show initial post-bifurcation slopes for a homogeneous solid.
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Fig. 11. Growth of a shear band in a solid that develops a sharp yield surface corner, but no total loading
range. The initial post-bifurcation slopes are zero, as indicated by dashed line.
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Fig. 12. Growth of a shear band in a slice of material that reaches the critical orientation considerably after
the smallest critical strain. The yield surface corner is relatively blunt.
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range is taken to occupy one half of the forward cone of normals (80 =8,,/2). Now the stiffening
effect, which occurs as soon as total loading ceases and which is emphasized by the blunt
corner, does not allow the localization process to "run away", except at the very large
imperfection l =0.1. Instead, deformation outside the band continues and localization in the
band saturates. This effect is seen even more dramatically in Fig. II where the cone angle is
sharp (Pc =135°) but the total loading range has been set to zero (80 =(0). With 80 =00,
stiffening sets in for any increment which departs from proportional loading (i.e. from ~ =0)
and the shear band only experiences relatively mild shearing, except when the imperfection is
large. (Bifurcation in the perfect block still occurs at Ec =0.32 when 80 =0 but, from (4.35), it
does so with dOJ/dE =0 on both solution branches.)

Figure 12 should be contrasted with Fig. 10, since all parameters are the same (Pc =IW,
80 =8J2, N =0.1) except that the initial orientation 1/11 is IS° in Fig. 12 which is well below the
initial orientation 1/11 = 35.8° associated with critical bifurcation in Fig. 10. Consequently, the
bifurcation strain (e =0.68) is more than twice that in Fig. 10 and, even in the presence of
imperfections, shear band formation is correspondingly postponed. When the band does start to
develop, however, it quickly succumbs to run-away localization in Fig. 12, while it does not in
Fig. 10. The responses in Fig. 12 are not unlike those for the kinematic hardening material in
Fig. S. The stiffening effect of the blunt corner is not sufficient to hold back localization at the
hiaher stress level acting on the band when it has rotated into the critical orientation range. By
contrast, in Fig. 10 the stiffening effect at the lower stresses is able to retard the growth of the
shear band to the point where the band has rotated past the range of criticality.

Plots of the strain outside the band at localization, EIIIU, are shown as a function of initial
band orientation in Fig. 13 for two sets of corner parameters for l =0.01. Also shown is the
strain level at which OJ has grown to - r. The main difference between the two cases is that the
minimum value of Emu is larger than the critical bifurcation strain (Ec =0.32) for the solid with a
blunt corner on its yield surface, whereas it is slightly less for the solid with the sharp corner.

Some of the features described above appear to be in qualitative accord with the obser­
vations made by Anand and Spitzig[8] in their experimental study of shear band formation in a
high strength maraging steel under plane strain tension and compression. By deforming block
specimens to various levels of strain, by slicing the specimens and by etching, these workers
were able to ascertain the strain at which the first shear bands set in. Their material has low, but
positive, strain hardening and the bands set in at a relatively small strain which was actually
lower than the prediction based on deformation theory. No porosity was observed. The
orientations of the bands satisfied 1/1 > 45° in tension and 1/1 < 45· in compression, in accord with
the theory. One can infer that localization did saturate in most of the bands, since at overall
strains well beyond the point where the bands first were observed the material still maintained
its integrity, but the number of bands had multiplied significantly. At a sufficiently high strain at
least one band did experience run-away localization and the material failed.
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Fig. 13. Localization strain as a function of initial _band orientation for two sets of comer theory
parameters. In all cases {=0.01 and N =0.1.
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